The Pascal Automation Controller™ (PAC) is a DIN rail mounted C-Bus device which provides sophisticated yet affordable control of a Clipsal C-Bus system. The PAC can perform operations in response to monitored events by executing custom written embedded programs. These programs are written by installers to suit individual application needs using the Windows based Programming Interface for C-Bus Embedded Devices or ‘PICED’ software.

The PAC provides control based on conditional logic, time scheduling, scene control, RS-232 strings or combinations of these. The unit is programmed using a combination of software GUIs, wizards and an extended version of the standard ‘Pascal’ computer language which includes customised commands specifically for C-Bus control.

One of the primary uses of the PAC is for installers to develop custom programs which utilise conditional logic. Conditional logic is based on conditions such as time values and C-Bus Group Address levels.

For example, programs can be developed based on whether C-Bus relay outputs are on or off, or on the level of C-Bus dimmer outputs. The PAC is then programmed to perform required C-Bus actions based on these conditions.

The PAC is a native C-Bus device and is able to interact with the complete range of C-Bus and C-Bus Wireless products.

The unit includes a built-in real time clock and 192Kb of user memory which allows installers to include up to 2000 lines of code in their programs. The built-in EEPROM memory retains program information; there is no need for a backup battery or a separate memory unit to back up this information in the event of a power loss. An additional backup battery is only required for backing up the real time clock following a power loss of more than 24 hours.

The on-board processor enables fast data processing, and the execution time for a typical 200 line program is approximately 50 milli-seconds.
- Two RS232 Ports for third party device control
- Easy to understand and learn programming language
- Windows based programming GUIs and Wizards
- Command line programming for advanced programmers.
The PAC can be DIN rail mounted with other C-Bus units (eg, in an electrical distribution board) or, as long as the normal C-Bus installation rules are adhered to, it can be field mounted anywhere on a C-Bus network.

The PAC only requires a C-Bus connection to operate, it is powered from a C-Bus network and is connected to the C-Bus Cat-5 UTP data bus in the same way as other C-Bus units.

The PAC provides a USB interface through which programs are downloaded. The USB connection can also be used by a PC to communicate directly with a C-Bus installation. This allows the PAC to function as a USB connected PC Interface and can be used by the C-Bus Toolkit software when configuring a C-Bus installation.

The PAC supports multiple C-Bus networks and multiple C-Bus Applications.

It is possible to read from and write to RS-232 serial ports from the PAC. This enables interfaces to many automation and audio/visual products to be created. The two serial ports included can be used simultaneously.

1Additional power connection may be required if an external RS-232 device is connected to the unit.

Typical Applications

- Complex Lighting Scenes, eg. Museums and Multi-Storey Building shutdown sequences
- Corridor Linking in Commercial Buildings
- Partition Dependent Room Linking/Joining in Conference Room, Exhibition Areas, etc
- Extensive Real-Time Scheduling, e.g. Shopping Centres
- Control of third party devices via RS-232 ports*, e.g. Video Projectors
- Interfacing to third party systems via RS-232 ports*, e.g. PLCs, Modbus systems
- Other complex Logic functions, for example multiple blind operations, Exclusive time based switching, i.e. C-Bus wall switch lockouts.

* Advanced Users Functions. These applications may require additional hardware.
PICED Programming Software

The Pascal Automation Controller™ is programmed by an installer using the Programming Interface for C-Bus Embedded Devices, or ‘PICED’ software. The PICED software provides a programming solution for installers at many levels of expertise and has been designed to be intuitive and easy to use. The PICED software is flexible and includes inbuilt wizards and GUIs for scenes, schedules and logic-based programming.

The inbuilt Text Editor allows freeform text based program entry for more complex logic programs and advanced programmers. The PICED software is available for download from the CIS web site (at no cost) and is continuously being improved by CIS with new features.

PICED Programming Tools

Scheduling Tool

The PICED scheduling tool allows time based events to be programmed into the Pascal Automation Controller™. The PAC checks every second whether a particular event is due to occur, and actions the event (or events) accordingly.

Managing Schedules

Schedules are created and managed in PICED software using the Scheduling Manager. The Scheduling Manager allows the installer to view a summary of all the schedules in a PAC project and see which are currently active. Schedules can be added, duplicated, edited and deleted in the Schedule Manager.

Editing Schedules

Schedules are edited using the PICED software schedule editor. The schedule editor allows the following to be edited.

- The schedule name or description
- Enabling and disabling schedules. Schedules can be enabled and disabled via a specified C-Bus Group Address level
- Schedule time(s). This can be a fixed time, a time based on sunrise/sunset (plus or minus an offset) or a schedule repeated at regular intervals.
- Schedule day(s). This can be once only, every day, every week day, every weekend, every week, every month, every year, repeat days, odd days, even days, combinations of these and many other options.
- Schedule event(s). This can be setting a C-Bus Group Address to a level (including the setting the ramp rate), pulsing a C-Bus Group Address to a level or setting a C-Bus scene to occur.
Scene Programming Tool

The PICED scene programming tool allows installers to quickly and easily program scenes into a PAC. Common examples of uses of scenes which can be set using the Pascal Automation ControllerTM are:

- Setting all of the lighting in a building on or off, either manually or at scheduled times
- Setting the lighting in a room for a particular use (for a presentation or for a meeting)
- Controlling a series of loads for a particular use. For example, to set up for a video presentation, a scene could dim the lighting, close the blinds, lower the projector screen, start the DVD player and start the projector.

Triggering Scenes

Scenes can be ‘set’ in two ways:

- By automatically setting the required scene at a particular time (or times) via a schedule, or
- By setting the C-Bus scene Trigger Group to its trigger level.

Managing Scenes

The Scene Manager allows the installer to view, add, copy, edit and delete scenes in a PAC project.

Editing Scenes

The Scene Editor allows the installer to edit the scenes in a PICED project. The values edited are:

- The name or description of each scene.
- The C-Bus Trigger Group Address for each scene. A scene can be triggered based on the level of a C-Bus Trigger Group Address.
- A series of ‘actions’ for each scene. Actions are C-Bus events that the scene will execute when triggered. Actions allow the user to ramp C-Bus Group Addresses to specified levels or pulse C-Bus Groups Addresses to specified levels for a defined duration.
Logic Programming

The programming language used in the PICED software is based on the standard Pascal computer language, enhanced by CIS with specific commands related to C-Bus control. Logic programs are developed by the installer using freeform text entry or, for simple logic programs and for installers new to the PICED software, a programming wizard is provided.

The Pascal language supports commands such as:

- Conditional logic (IF, THEN, AND, OR, NOT etc)
- Flow Control (FOR, REPEAT, WHILE)
- Variables (integer, real, Boolean, character, string)
- Procedures and Functions
- Arithmetic.

The Language has been extended to support functions such as:

- Control and monitor C-Bus Group Addresses
- Control and monitor C-Bus scenes
- C-Bus tag names
- Serial (RS232)
- Edge triggered conditional statements.

Wizard Conditions

Conditions are the circumstances under which actions are to be executed. The types of conditions which can be used in the logic wizard are:

- C-Bus level
- C-Bus scene level
- Date (day/month/year)
- Time of Day
- Day of the Week.

Wizard Actions

An action is something that the PAC is able to do under specified conditions. The types of actions which can be performed include:

- Set a C-Bus level
- Set C-Bus scene
- Delay
- Enable / Disable a program module.

Programming Wizard

Logic based programs can be created with the programming wizard. The wizard provides a GUI based point and click method for creating basic logic programs. These basic logic programs are suitable for a number of applications. More complex programs are produced by advanced users utilising the freeform text programming method (see next page).

The following details can be entered into the wizard:

- Name
- Description
- Task. This selects whether the code is to be a conditional action or just a series of actions
- Run. This selects whether the code should run continuously or only when triggered.
PICED logic programs can be input by typing text directly into the editing window. To assist the readability of typed programs, the logic commands are highlighted automatically in a different colour.

The PICED software utilises C-Bus project database tag files, so C-Bus Group Address tags previously created in the C-Bus Toolkit software can be utilised by installers when C-Bus Group Addresses are used in PAC programs. There is no need to use hex or decimal C-Bus Group Address values. This ensures programs are easy to read.

The most common structure used in programs is the ‘once’ statement. It is used to perform an action if certain conditions are true. For example, if it is required to switch on the Outside Lighting at 7:00 PM every night, the statement would be typed as:

\[
\text{once (time = "7:00PM") then} \\
\text{SetLightingState("Outside Lighting", ON);}
\]

When entering freeform text programs, menus of common programming tools are quickly accessible by clicking the right mouse button in the text entry window. This conveniently provides the installer with all the necessary functionality to accomplish a task within a single menu. This menu includes tools to edit, insert, copy, cut and paste commands, as well as undoing changes. All commands are accessible from this menu. A search facility is included to find words within the code window.

Statement Wizard

The Statement Wizard creates sections of code. It can be used to create conditional statements (a condition and some actions) or plain statements (actions only). The Statement Wizard is accessed by right-clicking on the code window where the code is to be inserted and selecting the Statement Wizard item from the pop-up menu. Many dialogue boxes are also included to automate the generation of program text for the installer.

Logic Programming Guide

A complete programming guide is available for PICED software. This is supplied with the downloaded software in Windows Help and pdf formats.
EXAMPLES

LOGIC PROGRAMMING COMMANDS
The PICED software programming language includes over 200 commands to achieve the C-Bus functionality required by clients. Some of these commands are listed below.

EXAMPLES OF C-BUS RELATED COMMANDS
One of the primary purposes of the PAC is to provide control and monitoring of C-Bus. There are a series of functions provided for access to C-Bus Group Address levels and states. Some of these are listed below.

<table>
<thead>
<tr>
<th>Function/Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GetCBusLevel Function</td>
<td>Reads the level of a C-Bus Group Address.</td>
</tr>
<tr>
<td>GetCBusState Function</td>
<td>Reads the state of a C-Bus Group Address.</td>
</tr>
<tr>
<td>GetLightingLevel Function</td>
<td>Reads the level of a C-Bus Group Address.</td>
</tr>
<tr>
<td>PulseCBusLevel Procedure</td>
<td>Pulses the level of a C-Bus Group Address.</td>
</tr>
<tr>
<td>SetCBusLevel Procedure</td>
<td>Sets the level of a C-Bus Group Address.</td>
</tr>
</tbody>
</table>

EXAMPLES OF C-BUS SCENES RELATED COMMANDS
The programming language also includes functions which enable the control and monitoring of C-Bus scenes.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrossFadeScene Procedure</td>
<td>Sets the level of a C-Bus scene Group Addresses to their default levels, but using ramp rates selected such that all Group Addresses get to their final level at approximately the selected time.</td>
</tr>
<tr>
<td>GetSceneLevel Function</td>
<td>Reads the level of a C-Bus scene.</td>
</tr>
<tr>
<td>SetScene Procedure</td>
<td>Sets the level of a C-Bus scene Group Addresses to their default levels.</td>
</tr>
<tr>
<td>StoreScene Procedure</td>
<td>Stores the level of a C-Bus scene Group Addresses.</td>
</tr>
<tr>
<td>NudgeSceneLevel Procedure</td>
<td>The NudgeSceneLevel procedure adjusts the level of a C-Bus scene Group Addresses by a particular offset.</td>
</tr>
<tr>
<td>SetSceneOffset Procedure</td>
<td>The SetSceneOffset procedure sets the level of a C-Bus scene Group Addresses to their default level plus an offset. The scene Group Addresses are set to particular levels with a particular ramp rate. The level for each Group Address is its default value plus the offset value.</td>
</tr>
</tbody>
</table>

EXAMPLES OF TIME RELATED COMMANDS
The Sunrise function provides a value which represents the time of sunrise. The sunrise time depends on the longitude and latitude, the date and daylight savings. The software dynamically calculates the sunrise time (based on longitude and latitude) and can be used to trigger events based on this time.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sunrise Function</td>
<td>The Sunrise function provides a value which represents the time of sunrise.</td>
</tr>
<tr>
<td>Sunset Function</td>
<td>The Sunset function provides a value which represents the time of sunset.</td>
</tr>
<tr>
<td>TimerRunning Function</td>
<td>The TimerRunning function returns whether the specified timer is running or not.</td>
</tr>
</tbody>
</table>

EXAMPLES OF RS-232 RELATED COMMANDS

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ReadSerial Procedure</td>
<td>The ReadSerial procedure reads data from a serial port.</td>
</tr>
<tr>
<td>WriteSerial Procedure</td>
<td>The WriteSerial procedure sends data to a serial port.</td>
</tr>
</tbody>
</table>
PASCAL AUTOMATION CONTROLLER™ SPECIFICATIONS

Electrical

<table>
<thead>
<tr>
<th>Connections</th>
<th>2 x C-Bus (RJ45)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 x RS-232 (RJ45)</td>
</tr>
<tr>
<td></td>
<td>1 x USB type B socket</td>
</tr>
<tr>
<td></td>
<td>2 x screw terminals for DC battery + / - (for extended real time clock backup)</td>
</tr>
<tr>
<td></td>
<td>2 x screw terminals for RS-232 power</td>
</tr>
</tbody>
</table>

C-Bus supply voltage

15 to 36V DC @ 32mA

RS-232

The two RS-232 ports allow the PAC to interface with third party device or system. These ports are opto-isolated and require to be powered if used. They can be powered from the DTR and RTS handshaking lines of the RS-232 ports (if the third party serial device has control over the handshaking lines) or via an external power supply connected to the PAC.

RS-232 supply voltage

24V a.c. @ 20mA (Note, this power connection does not charge the external backup battery).

Backup battery

Super Capacitor included for backing up of time clock for 24 hours after C-Bus loss. External battery connection for extended time clock backup. No battery backup required for program configuration backup.

Battery backup supply voltage

12V d.c. @ 30mA

C-Bus system clock

Software selectable

Network burden

Software selectable

Operating humidity range

10 to 95% RH

Operating temperature range

0° to 45°C

LED Indicators

Status Indicator

The “Status” indicator provides a guide to the internal PAC status.

<table>
<thead>
<tr>
<th>Indicator Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>User configuration data is corrupt. A new configuration file must be transferred.</td>
</tr>
<tr>
<td>Off</td>
<td>Logic Error</td>
</tr>
<tr>
<td>Rapid constant flash</td>
<td>The firmware is corrupt. New firmware and a new configuration file must be transferred.</td>
</tr>
<tr>
<td>(approximately 5Hz)</td>
<td></td>
</tr>
<tr>
<td>Erratic flash</td>
<td>Logic is running. The indicator state is toggled when logic is run.</td>
</tr>
<tr>
<td>(approximately 1 Hz)</td>
<td></td>
</tr>
</tbody>
</table>

User Indicator

The “User” indicator is controlled by the logic programs. Its state will vary depending on how the project is programmed.

Unit/Comms Indicator

The “Unit/Comms” indicator shows the status of the PAC unit.

<table>
<thead>
<tr>
<th>Indicator Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Normal operation</td>
</tr>
<tr>
<td>Erratic Flash</td>
<td>Data exchange in progress (USB port)</td>
</tr>
<tr>
<td>Off</td>
<td>No C-Bus power connected</td>
</tr>
</tbody>
</table>

C-Bus Indicator

The “C-Bus” indicator shows the status of the C-Bus network at the unit.

<table>
<thead>
<tr>
<th>Indicator Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>On</td>
<td>Power is on and functional</td>
</tr>
<tr>
<td>Flashing</td>
<td>There is insufficient power to support the C-Bus network</td>
</tr>
<tr>
<td>Off</td>
<td>No C-Bus clock signal is present</td>
</tr>
</tbody>
</table>
PROGRAMMING SPECIFICATION

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Available User Memory for programming</td>
<td>192Kb</td>
</tr>
<tr>
<td>Maximum program length</td>
<td>~2000 lines</td>
</tr>
<tr>
<td>Maximum number of C-Bus Applications supported</td>
<td>10</td>
</tr>
<tr>
<td>Maximum number of C-Bus Group Addresses supported</td>
<td>255 Group Addresses on each C-Bus Application, 2550 total</td>
</tr>
<tr>
<td>Number of programming commands available</td>
<td>>200</td>
</tr>
<tr>
<td>Maximum number of If-Then conditions</td>
<td>No specific limit, >1000</td>
</tr>
<tr>
<td>Maximum levels of If-Then “nesting”</td>
<td>No specific limit, >1000</td>
</tr>
<tr>
<td>Maximum number of individual modules in a program</td>
<td>50</td>
</tr>
<tr>
<td>Number of flags</td>
<td>No specific limit, >1000</td>
</tr>
<tr>
<td>Number of variables</td>
<td>No specific limit, >1000</td>
</tr>
<tr>
<td>Number of timers</td>
<td>20 in-built, >1000 user definable</td>
</tr>
<tr>
<td>Maximum number of event schedules</td>
<td>250</td>
</tr>
<tr>
<td>Variable mathematical functions</td>
<td>Yes</td>
</tr>
<tr>
<td>Schedule events by time</td>
<td>Yes</td>
</tr>
<tr>
<td>Sunrise/Sunset events (dynamic, based on longitude & latitude)</td>
<td>Yes</td>
</tr>
<tr>
<td>Daylight savings time adjustment</td>
<td>Yes</td>
</tr>
<tr>
<td>Adjust clock within schedule</td>
<td>Yes</td>
</tr>
<tr>
<td>Random event times</td>
<td>Yes</td>
</tr>
<tr>
<td>Power failure recovery process</td>
<td>User defined</td>
</tr>
<tr>
<td>Time resolution</td>
<td>1 second</td>
</tr>
<tr>
<td>Clock Accuracy</td>
<td>0.5 second per day</td>
</tr>
</tbody>
</table>

ADDITIONAL PAC INPUTS / OUTPUTS

- **Wall switch input**: C-Bus Wall Switches
- **Telephone control**: C-Bus Telephone Interface Unit
- **Light level control**: C-Bus Light Level Units
- **Touch Screen control**: C-Bus Touch Screens
- **Analogue output (0-10V d.c.)**: C-Bus Analogue Output Units
- **Digital outputs**: C-Bus Relay Units
- **Digital inputs**: C-Bus General Input Units, Auxiliary Input Units & Bus Couplers
- **Analogue inputs**: C-Bus General Input Units
- **Infra-red outputs (a/v control)**: C-Bus Infra-red Transmitter Units
RS232 INTERFACE

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>User-controllable</td>
<td>Yes</td>
</tr>
<tr>
<td>Number</td>
<td>2</td>
</tr>
<tr>
<td>Baud rate</td>
<td>600 to 38400 Baud</td>
</tr>
<tr>
<td>Transmit (output) capability</td>
<td>ASCII, binary, variable values, etc.</td>
</tr>
<tr>
<td>Receive (input) capability</td>
<td>ASCII, binary, variable values, etc.</td>
</tr>
<tr>
<td>Maximum receive data length</td>
<td>255 bytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pinouts</th>
<th>Pin</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>Data Carrier Detect</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DSR</td>
<td>Data Set Ready</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DTR</td>
<td>Data Terminal Ready</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>RD</td>
<td>Receive Data</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>TD</td>
<td>Transmit Data</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>CTS</td>
<td>Clear To Send</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>RTS</td>
<td>Request To Send</td>
<td></td>
</tr>
</tbody>
</table>

When the RS-232 port is connected to an external device(s), a suitable shielded data cable should be used. The RS-232 cable length should be limited to 15 metres for communication speeds up to 19,200 bps, or 7.5 metres at 38,400 bps.

Example of PICED logic program to send text from RS-232 Port #1 of the PAC.

```plaintext
{arm the security system when triggered}  
once GetTriggerLevel("Arm System") = 255 then
begin
  WriteSerial(1, "Arm System");
end;
```

MECHANICAL SPECIFICATION

<table>
<thead>
<tr>
<th>Feature</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enclosure</td>
<td>DIN rail mounted, 4M Modules Wide</td>
</tr>
<tr>
<td>Dimensions (W x H x D)</td>
<td>72 x 92 x 63 mm</td>
</tr>
<tr>
<td>Programming connector</td>
<td>USB for PAC program downloading and C-Bus Communication (PC Interface functionality)</td>
</tr>
<tr>
<td>C-Bus connectors</td>
<td>2 x RJ45 sockets (in parallel)</td>
</tr>
<tr>
<td>RS232 port connectors</td>
<td>Port #1 1xRJ45, Port #2 1xRJ45</td>
</tr>
<tr>
<td>Weight</td>
<td>150g</td>
</tr>
</tbody>
</table>
STANDARDS COMPLIED

<table>
<thead>
<tr>
<th>Australian/New Zealand EMC & Electrical Safety Frameworks and Standards</th>
<th>Regulations</th>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
</table>
| The 5500PACA product complies with the following: | EMC (C-Tick) | AS/NZS CISPR 22
AS/NZS CISPR 24 | IT Equipment Emissions Standard
IT Equipment Immunity Standard |

|----------------------------------|------------|---------------------------|------------|--------|
| The 5500PACA product complies with the following: | EMC | EMC Directive 89/336/EEC | EN 55022
EN 55024 | IT Equipment Emissions Standard
IT Equipment Immunity Standard |

<table>
<thead>
<tr>
<th>Other International Directives and Standards</th>
<th>Regulations</th>
<th>Standard</th>
<th>Title</th>
</tr>
</thead>
</table>
| The 5500PACA product complies with the following: | EMC | CISPR 22
CISPR 24 | IT Equipment Emissions Standard
IT Equipment Immunity Standard |

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5500PACA</td>
<td>C-Bus Pascal Automation Controller™ (PAC)</td>
</tr>
</tbody>
</table>
Product of
Clipsal Integrated Systems Pty Ltd
Member of Clipsal Australia Holdings Group
ABN 15 089 444 931

Head Office
12 Park Terrace, Bowden
South Australia 5007
PO Box 103 Hindmarsh
South Australia 5007
Telephone (08) 8440 0500
International +61 8 8440 0500
Facsimile (08) 8346 0845
International +61 8 8346 0845
Internet www.clipsal.com/cis
E-Mail cis@clipsal.com.au

CIS Technical Support Hotline
1300 722 247

Offices in all States
NSW Sydney (02) 9794 9200
Albury (02) 6041 2377
VIC Melbourne (03) 9207 3200
Country Areas 1800 653 893
QLD Brisbane (07) 3244 7444
Townsville (07) 4729 3333
SA Adelaide (08) 8268 0400
WA Perth (08) 9442 4444
TAS Launceston (03) 6343 5900
NT Darwin (08) 8947 0278

International Representatives
China
Clipsal China Limited
Telephone +86 755 8237 5959

Greece
Schneider Electric AE
Telephone +30 69 4646 3200

Hong Kong
Clipsal Integrated Systems (HK) Limited
Telephone +852 2487 0261

India
Schneider Electric India Pvt Ltd
Telephone +91 11 5159 0000

Indonesia
PT Clipsal Graha Nusa
Telephone +62 21 630 6430

Korea
Clipsal Korea Co. Ltd
Telephone +822 549 5550

Pakistan
Clipsal Pakistan (Pvt) Ltd
Telephone +92 21 506 7278

Philippines
Clipsal Philippines Inc.
Telephone +632 683 0275-78

South Africa
Clipsal South Africa (Pty) Ltd
Telephone +27 11 314 5200

Taiwan
Clipsal (Taiwan) Co Ltd
Telephone +886 2 2558 3456

Thailand
Clipsal Thailand Ltd
Telephone +66 2 952 5338

United Arab Emirates
Clipsal Middle East
Telephone +971 6 5570 777

United Kingdom
Clipsal Integrated Systems
C/o Schneider Electric
Telephone +44 870 608 8 608

Vietnam
Clipsal - VTEC
Telephone +84 856 3002

You can find this brochure and many others online in PDF format at:
clicks.com
Follow the links off the home page or access the following page directly:
clicks.com/wat_lib_pdf.cfm

Clipsal Integrated Systems Pty Ltd reserves the right to change specifications, modify designs and discontinue items without incurring obligation and whilst every effort is made to ensure that descriptions, specifications and other information in this catalogue are correct, no warranty is given in respect thereof and the company shall not be liable for any error therein.

© Clipsal Integrated Systems Pty Ltd 2005. All rights reserved.
This material is copyright under Australian and international laws. Except as permitted under the relevant law, no part of this work may be reproduced by any process without prior written permission of and acknowledgement to Clipsal Integrated Systems Pty Ltd.